JSPS/NRF/NSFC A3 Foresight Program "Nuclear Physics in the 21st Century" Session: Nuclear Equation of State, 3rd talk (15:40-16:10) 2022 Annual Meeting, Feb. 17-18

Entrainment Effects in Neutron Stars: Overview and Progress

Kazuyuki Sekizawa

Department of Physics, School of Science Tokyo Institute of Technology

"Entrainment" is something more than EoS!

"Entrainment" is a phenomenon between two species (particles, gases, fluids, etc.), where a motion of one component attracts the other.

"Entrainment" in the inner crust

> Part of dripped neutrons can be "effectively bound" (immobilized) by the periodic structure (due to Bragg scatterings), resulting in a larger effective mass

Entrainment

- \rightarrow reduction of n_c
- \rightarrow enhancement of m^*

$$m_{\rm n}n_{\rm n}^{\rm f}=m_{\rm n}^{\star}n_{\rm n}^{\rm c}$$

 $n_{\rm n}^{\rm c}$: Conduction neutron number density (neutrons that can actually flow)

 $m_{\rm n}^{\star}$: (Macroscopic) Effective mass

Dripped neutrons extend spatially

→ Affected by the lattice, and a band structure is formed

Band calculations for the inner crust

The "entrainment effect" is still a debatable problem

The first consideration for 1D, square-well potential

K. Oyamatsu and Y. Yamada, NPA578(1994)184

Band calculations for slab (1D) and rod (2D) phases

B. Carter, N. Chamel, and P. Haensel, NPA748(2005)675

Entrainment effects are **weak** for the slab & rod phases:

 $\left| rac{m^\star}{m} \sim \left\{ egin{array}{ll} 1.02 - 1.03 & ext{for the slab phase} \ 1.11 - 1.40 & ext{for the rod phase} \ \end{array}
ight.$

Band calculations for cubic-lattice (3D) phases

N. Chamel, NPA747(2005)109 (2005); NPA773(2006)263; PRC85(2012)035801; J. Low Temp. Phys. 189, 328 (2017)

Significant entrainment effects were found in a low-density region:
$$\frac{m^{\star}}{m} \gtrsim 10$$
 or more! for the cubic lattice

- The first *self-consistent* band calculation for the slab phase (based on DFT with a BCPM EDF)

"Reduction" of the effective mass was observed:

$$rac{m^{\star}}{m} \sim 0.65$$
 — 0.75 for the slab phase

Yu Kashiwaba and T. Nakatsukasa, PRC100(2019)035804

- Time-dependent extension of the self-consistent band theory (based on TDDFT with a Skyrme EDF)
- "Reduction" was observed, consistent with the Tsukuba group.

K. Sekizawa, S. Kobayashi, and M. Matsuo, arXiv:2112.14350 (2021)

Furthermore, possible competing effects present:

Pairing correlations and disorder of the crustal structure

- ➤ The band structure effects are suppressed when the pairing gap is comparable to or greater than the strength of the lattice potential.
- ✓ Mean field approximation (i.e. BdG) with a **1D periodic (sinusoidal) potential**
- ✓ <u>3D case is also evaluated</u>, using a realistic potential based on ETFSI: [J.M. Pearson, N. Chamel, A. Pastore, and S. Goriely, Phys. Rev. C **91**, 018801 (2015)]

For a 3D system:

 $n_s/n \sim 0.20$ for $\Delta = 0$ $n_s/n \sim 0.64$ for $\Delta = 1$ MeV $n_s/n \sim 0.71$ for $\Delta = 1.5$ MeV

 $m^*/m \sim 5.00 \text{ for } \Delta = 0$ $m^*/m \sim 1.41 \text{ for } \Delta = 1 \text{ MeV}$ $m^*/m \sim 1.56 \text{ for } \Delta = 1.5 \text{ MeV}$

$$V_{\text{ext}}(\mathbf{r}) = V_K(e^{iKz} + e^{-iKz})$$

Slab period: $a = 2\pi/K$

Entrainment in a 1D system

Disorder effects

- J.A. Sauls, N. Chamel, and M.A. Alpar, arXiv:2001.09959 (appeared in Jan. 2020)
- In the case of **amorphous crust** (i.e. **no crystalline order**), there is enough superfluid neutrons to explain large glitches.
- Superfluid neutron density n_s is reduced due to pair breaking by scatterings off disordered nuclear solid.
- A theory of "metallic alloys," "amorphous metals," and "dirty superconductors" is applied.
- Except a bottom layer ($n > 0.06 \text{ fm}^{-3}$), the effect is weak.

For $n \lesssim 0.06 \, \mathrm{fm}^{-3}$, $2R_{\mathrm{WS}} \gtrsim 40 \, \mathrm{fm}$, while $R \approx 6 \, \mathrm{fm}$; i.e.

Pure Neutron Matter at T = 0

$$n_{\rm s} = n_{\rm n}$$

Results of band calculations for **perfect crystals** (BCC)

$$n_{\rm c} = n_{\rm n} imes rac{m_{
m n}}{m_{
m n}^{\star}}$$
 Large effective mass \Longrightarrow Less conduction neutrons

Amorphous crust (no crystalline order)

$$n_{\rm s} pprox \left\{ egin{array}{ll} n_{
m n} \left(1 - rac{\pi^2}{8} rac{\xi_0}{l}
ight) & {
m for} \ lpha \ll 1 & {
m at low densities} \ & \xi_0 << l \ & \\ n_{
m n} rac{l}{\xi_0} & {
m for} \ lpha \gg 1 & {
m at high densities} \ & l < \xi_0 \ \end{array}
ight.$$

$$\begin{array}{ll} \xi_0 = \hbar v_{\rm F}/\pi\Delta & : \mbox{ coherence length in PNM} \\ l = 1/n_{\rm imp}\sigma_{\rm tr} : \mbox{ mean free path} \end{array} \quad n_{\rm imp} = \frac{1}{V_{\rm WS}} \quad \sigma_{\rm tr} = \pi R^2 \label{eq:tau_scale}$$

The current debatable situation about the entrainment effects

The purpose is to clarify the actual effects of entrainment in the inner crust of neutron stars!

Band calculation (Thomas-Fermi approx., w/o pairing)

Band calculation
[Self-consistent (TD)DFT, w/o pairing]

$$\frac{m^\star}{m} \sim \begin{cases} 1.02 - 1.03 & ext{for the slab phase} \\ 1.11 - 1.40 & ext{for the rod phase} \end{cases}$$

$$\frac{m^{\star}}{m} \gtrsim 10$$
 or more! for the cubic lattice

$$\frac{m^\star}{m} \sim 0.65 - 0.75$$
 for the slab phase

We consider those numbers should be corrected.

Band calculation (Mean-Field approx., with pairing)

$$\frac{m^\star}{m} \sim 1-2$$
 for the slab phase $\frac{m^\star}{m} \sim 1.41-1.56$ for the cubic phase (at most)

Disorder effects (w/o band structure effects)

$$\frac{m^\star}{m} \sim 1 - 1.2$$
 for the cubic phase

Current members of our "Entrainment" group

(consist of Japan & China sides)

Kochi Univ.

K. Iida

EoS, Pasta, QPO Color superconductivity Ultracold atomic gases

+some students

Zhejiang Univ.

G. Watanabe

Nuclear pasta Superfluid phenomena Ultracold atomic gases

+1 postdoc (Y. Minami)

Univ. Tsukuba

T. Nakatsukasa

Nuclear DFT
Pairing correlations
Large-amplitude motions

+1 PhD students

Niigata Univ.

M. Matsuo

Nuclear DFT
Pairing correlations
Linear response theory (QRPA)

+1 PhD student (graduated)

Tokyo Tech (April 2021~)

K. Sekizawa

Nuclear (TD)DFT
Superfluid dynamics, Glitches
Ultracold atomic gases

+2 MSc (graduated), 1 BSc students

It may affect interpretation of various phenomena, e.g.:

Neutron-star glitch

Quasi-periodic oscillation

Seismology (地震学): Studying inside of the Earth from earthquakes and their propagation

QPOs as "asteroseismology"

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 489, 3022–3030 (2019) Advance Access publication 2019 August 29 doi:10.1093/mnras/stz2385

Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich

Hajime Sotani^o, ^{1★} Kei Iida² and Kazuhiro Oyamatsu³

³Department of Human Informatics, Aichi Shukutoku University, 2-9 Katahira, Nagakute, Aichi 480-1197, Japan

➤ Many (~30) observed QPO frequencies, and prediction by a Bayesian analysis, have been nicely explained by torsional oscillations of tube—bubble or sphere cylinder layer

¹Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

²Department of Mathematics and Physics, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

QPOs as "asteroseismology"

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 489, 3022–3030 (2019) doi:10.1093/mnras/stz2385

Advance Access publication 2019 August 29

Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich

Hajime Sotani[®], ^{1★} Kei Iida² and Kazuhiro Oyamatsu³

The interpretation will be affected by the entrainment effects!

➤ Many (~30) observed QPO frequencies, and prediction by a Bayesian analysis, have been nicely explained by torsional oscillations of tube—bubble or sphere—cylinder layer

¹Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

²Department of Mathematics and Physics, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan

³Department of Human Informatics, Aichi Shukutoku University, 2-9 Katahira, Nagakute, Aichi 480-1197, Japan

What is the glitch?

Pulsar - a rotating neutron star

- ✓ First discovery in August 1967 → "Little Green Man" LGM-1 → PSR B1919+21
- ✓ Since then, more than 2650 pulsars have been observed
- ✓ It gradually <u>spins down</u> due to the EM radiation

Typical example: the Vela pulsar

> Irregularity has been observed from continuous monitoring of the pulsation period

In rotating superfluid, an array of quantum vortices is generated

W. Ketterle, MIT Physics Annual. 2001

In rotating superfluid, an array of quantum vortices is generated

W. Ketterle, MIT Physics Annual. 2001

There must be a huge number ($\sim 10^{18}$) of vortices inside a neutron star!!

W. Ketterle, MIT Physics Annual. 2001

The vortex mediated glitch: Naive picture

The vortex mediated glitch: Naive picture

Results of TDSLDA calculation: $\rho_n \simeq 0.014 \, \mathrm{fm}^{-3}$

Results of TDSLDA calculation: $\rho_n \simeq 0.014 \text{ fm}^{-3}$

time= 8032 fm/c F_m (10.6)= 0.17 MeV/fm Q= 13 fm²

Vortex pinning/unpinning dynamics within 3D-TDGPE simulations

Simulations by Teppei Sasaki (MSc student, will be graduated in Mar. 2022)

☐ 3D TDGPE (Time-Dependent Gross-Pitaevskii Eqution):

$$(i - \gamma)\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) - \mu - \Omega_z \hat{L}_z + gN|\psi(\mathbf{x}, t)|^2 \right] \psi(\mathbf{x}, t)$$

☐ Equation of motion for the container:

$$I_c \frac{d\Omega_z}{dt} = -\frac{d\langle L_z \rangle}{dt} - N_{\text{ext}}$$

Vortex pinning/unpinning dynamics within 3D-TDGPE simulations

Simulations by Teppei Sasaki (MSc student, will be graduated in Mar. 2022)

☐ 3D TDGPE (Time-Dependent Gross-Pitaevskii Eqution):

$$(i - \gamma)\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) - \mu - \Omega_z \hat{L}_z + gN|\psi(\mathbf{x}, t)|^2 \right] \psi(\mathbf{x}, t)$$

☐ Equation of motion for the container:

$$I_c \frac{d\Omega_z}{dt} = -\frac{d\langle L_z \rangle}{dt} - N_{\text{ext}}$$

vortex-nucleus dynamics from neutrons and protons

Our goal and strategy

Goal: Unveil the mechanism of glitches

New collaboration started:

Nicolaus Copernicus Astronomical Centre

B. Haskell et al.

 $10^4 \mathrm{m}$

Macroscopic

- observations
- hydrodynamics

~10⁻¹⁰m

Mesoscopic

dynamics of vortices in a lattice of nuclei Provide model ingredients (e.g. filament model)

10⁻¹⁵-10⁻¹³m

Microscopic

Nuclear Physics!!

vortex-nucleus dynamics from neutrons and protons

Current members of our "Entrainment" group

(consist of Japan & China sides)

Kochi Univ.

K. Iida

EoS, Pasta, QPO Color superconductivity Ultracold atomic gases

+some students

Zhejiang Univ.

G. Watanabe

Nuclear pasta Superfluid phenomena Ultracold atomic gases

+1 postdoc (Y. Minami)

Univ. Tsukuba

T. Nakatsukasa

Nuclear DFT
Pairing correlations
Large-amplitude motions

+1 PhD students

Niigata Univ.

M. Matsuo

Nuclear DFT
Pairing correlations
Linear response theory (QRPA)

+1 PhD student (graduated)

Tokyo Tech (April 2021~)

K. Sekizawa

Nuclear (TD)DFT
Superfluid dynamics, Glitches
Ultracold atomic gases

+2 MSc (graduated), 1 BSc students

Progress form the Tsukuba group

1. Development of 3D, finite-temperature HFB solver

Yu Kashiwaba and T. Nakatsukasa, Phys. Rev. C **101**, 045804 (2020): Coordinate-space solver for finite-temperature Hartree-Fock-Bogoliubov calculations using the shifted Krylov method

Densities are calculated by Green's functions, avoiding diagonalizations of HFB matrices

Yu Kashiwaba and T. Nakatsukasa, Phys. Rev. C **100**, 035804 (2019): Self-consistent band calculation of the slab phase in the neutron-star crust

- 3. Development of a polynomial expansion method
 - T. Nakatsukasa, arXiv:2202.04448:

Self-consistent energy density functional approaches to the crust of neutron stars

➤ 3D, finite-temperature Skyrme HF method is developed, using a Fermion operator expansion method.

$$\hat{\rho}_T \approx \sum_{i=0}^M a_i T_j(\hat{H})$$

One-body density, with Fermi-Dirac distribution function is expanded by Chebyshev polynomials

→ offers a possible order-N approach for finite temperatures

Recent advances with TDDFT

We employ the Skyrme-Kohn-Sham DFT with the Bloch boundary condition

The Bloch boundary condition for single-particle orbitals

$$\psi_{\alpha \mathbf{k}}^{(q)}(\mathbf{r}) = \frac{1}{\sqrt{V}} u_{\alpha \mathbf{k}}^{(q)}(z) e^{i\mathbf{k} \cdot \mathbf{r}} \qquad \qquad \underline{u_{\alpha \mathbf{k}}^{(q)}(z + na) = u_{\alpha \mathbf{k}}^{(q)}(z)}$$

$$u_{\alpha \pmb{k}}^{(q)}(z+na)=u_{\alpha \pmb{k}}^{(q)}(z)$$

Periodicity of the slabs

α: Band index

k: Bloch wave vector

q: Isospin (n or p) a: Period of the slabs

Skyrme EDF

$$\frac{E}{A} = \frac{1}{N_{\rm b}} \int_0^a \left(\frac{\hbar^2}{2m} \tau(z) + \sum_{t=0,1} \left[C_t^{\rho}[n] n_t^2(z) + C_t^{\Delta \rho} n_t(z) \partial_z^2 n_t(z) + C_t^{\tau} \left(n_t(z) \tau_t(z) - \boldsymbol{j}_t^2(z) \right) \right] + \mathcal{E}_{\rm Coul}^{(p)}(z) \right) dz$$

Number density:

Kinetic density:

Current (momentum) density:

$$n_q(z) = 2 \sum_{\alpha, \mathbf{k}}^{\text{occ.}} \left| \psi_{\alpha \mathbf{k}}^{(q)}(\mathbf{r}) \right|^2$$

$$au_q(z) = 2 \sum_{\mathbf{r}}^{\text{occ.}} \left| \nabla \psi_{\alpha \mathbf{k}}^{(q)}(\mathbf{r}) \right|^2$$

$$n_q(z) = 2 \sum_{\alpha, k}^{\text{occ.}} \left| \psi_{\alpha k}^{(q)}(\boldsymbol{r}) \right|^2$$
 $\tau_q(z) = 2 \sum_{\alpha, k}^{\text{occ.}} \left| \nabla \psi_{\alpha k}^{(q)}(\boldsymbol{r}) \right|^2$ $\boldsymbol{j}_q(z) = 2 \sum_{\alpha, k}^{\text{occ.}} \text{Im} \left[\psi_{\alpha k}^{(q)*}(\boldsymbol{r}) \nabla \psi_{\alpha k}^{(q)}(\boldsymbol{r}) \right]$

*Uniform background electrons are assumed for the charge neutrality condition: $n_e = \bar{n}_p$

Picture from PRC100(2019)035804

Skyrme-Kohn-Sham equations

$$\hat{h}^{(q)}(z)\psi_{\alpha\mathbf{k}}^{(q)}(\mathbf{r}) = \varepsilon_{\alpha\mathbf{k}}^{(q)}\psi_{\alpha\mathbf{k}}^{(q)}(\mathbf{r}) \qquad \qquad \left(\hat{h}^{(q)}(z) + \hat{h}_{\mathbf{k}}^{(q)}(z)\right)u_{\alpha\mathbf{k}}^{(q)}(z) = \varepsilon_{\alpha\mathbf{k}}^{(q)}u_{\alpha\mathbf{k}}^{(q)}(z)$$

Ordinary single-particle Hamiltonian:

$$\hat{h}^{(q)}(z) = -\nabla \cdot \frac{\hbar^2}{2m_{\sigma}^{\oplus}(z)} \nabla + U^{(q)}(z) + \frac{1}{2i} \left[\nabla \cdot \boldsymbol{I}^{(q)}(z) + \boldsymbol{I}^{(q)}(z) \cdot \nabla \right] \qquad \qquad \hat{h}_{\boldsymbol{k}}^{(q)}(z) = \frac{\hbar^2 \boldsymbol{k}^2}{2m_{\sigma}^{\oplus}(z)} + \hbar \boldsymbol{k} \cdot \hat{\boldsymbol{v}}^{(q)}(z)$$

Additional (*k*-dependent) term:

$$\hat{h}_{\mathbf{k}}^{(q)}(z) = \frac{\hbar^2 \mathbf{k}^2}{2m_{\sigma}^{\oplus}(z)} + \hbar \mathbf{k} \cdot \hat{\mathbf{v}}^{(q)}(z)$$

Velocity operator:

$$\hat{m{v}}^{(q)}(z) \equiv rac{1}{i\hbar}ig[m{r},\hat{h}^{(q)}(z)ig]$$

Note: While we deal with 3D slabs, the equations to be solved are 1D!

Proton fraction:

$$Y_{\rm p} = \frac{\bar{n}_{\rm p}}{\bar{n}_{\rm n} + \bar{n}_{\rm p}}$$

Average nucleon density:

$$\bar{n}_q = \frac{1}{a} \int_0^a n_q(z) dz$$

Single-particle energy:

$$\varepsilon_{\alpha \boldsymbol{k}}^{(q)} = e_{\alpha \boldsymbol{k}}^{(q)} + \varepsilon_{\text{kin-}xy,\alpha \boldsymbol{k}}^{(q)} \approx \frac{\hbar^2 k_{\parallel}^2}{2m} \qquad k_{\parallel} = \sqrt{k_x^2 + k_y^2}$$
z-component

✓ Bound orbitals do not show band structure (k_z dependence)

Proton fraction:

$$Y_{\rm p} = \frac{\bar{n}_{\rm p}}{\bar{n}_{\rm n} + \bar{n}_{\rm p}}$$

Average nucleon density:

$$\bar{n}_q = \frac{1}{a} \int_0^a n_q(z) dz$$

Single-particle energy:

$$\varepsilon_{\alpha \boldsymbol{k}}^{(q)} = e_{\alpha \boldsymbol{k}}^{(q)} + \varepsilon_{\text{kin-}xy,\alpha \boldsymbol{k}}^{(q)} \approx \frac{\hbar^2 k_{\parallel}^2}{2m} \qquad k_{\parallel} = \sqrt{k_x^2 + k_y^2}$$
z-component

✓ <u>Dripped neutrons</u> show band structure (k_7 dependence)

The collective mass is extracted from **acceleration motion under constant force**

How to introduce spatially-uniform electric field

TDKS equation in a "velocity gauge"

$$i\hbar \frac{\partial \widetilde{u}_{\alpha \mathbf{k}}^{(q)}(z,t)}{\partial t} = \left(\hat{h}^{(q)}(z,t) + \hat{h}_{\mathbf{k}(t)}^{(q)}(z,t)\right) \widetilde{u}_{\alpha \mathbf{k}}^{(q)}(z,t) \qquad \mathbf{k}(t) = \mathbf{k} + \frac{e}{\hbar c} \widehat{A}_z(t) \hat{\mathbf{e}}_z$$

Spatially-uniform Vector potential

$$\mathbf{k}(t) = \mathbf{k} + \frac{e}{\hbar c} (\hat{A}_z(t)) \hat{e}_z$$

Gauge transformation for the Bloch orbitals:

Electric field:

k-dependent term:

Velocity operator:

$$\widetilde{u}_{\alpha \boldsymbol{k}}^{(q)}(z,t) = \exp\left[-\frac{ie}{\hbar c}A_z(t)z\right]u_{\alpha \boldsymbol{k}}^{(q)}(z,t) \qquad \qquad E_z(t) = -\frac{1}{c}\frac{dA_z}{dt} \qquad \qquad \widehat{h}_{\boldsymbol{k}}^{(q)}(z) = \frac{\hbar^2 \boldsymbol{k}^2}{2m_{\sigma}^{\oplus}(z)} + \hbar \boldsymbol{k} \cdot \hat{\boldsymbol{v}}^{(q)}(z) \qquad \hat{\boldsymbol{v}}^{(q)}(z) \equiv \frac{1}{i\hbar}[\boldsymbol{r}, \hat{h}^{(q)}(z)]$$

$$E_z(t) = -\frac{1}{c} \frac{dA_z}{dt}$$

$$\hat{h}_{m{k}}^{(q)}(z) = rac{\hbar^2 m{k}^2}{2m_g^{\oplus}(z)} + \hbar m{k} \cdot \hat{m{v}}^{(q)}(z)$$

$$\hat{m{v}}^{(q)}(z) \equiv rac{1}{i\hbar} igl[m{r}, \hat{h}^{(q)}(z) igr]$$

cf. K. Yabana and G.F. Bertsch, Phys. Rev. B **54**, 4484 (1996); G.F. Bertch *et al.*, Phys. Rev. B **62**, 7998 (2000)

Acceleration:

$$a_{\rm p} = \frac{d^2 Z}{dt^2}$$

C.m. position of protons:

$$Z(t) = \frac{1}{a} \int_0^a z \, n_{\rm p}(z, t) \, dz$$

Momentum of nucleons:

$$P_q(t) = \hbar \int_0^a j_q(z, t) \, dz$$

Total momentum:

$$P_{\text{tot}}(t) = P_{\text{n}}(t) + P_{\text{p}}(t)$$

✓ For neutron-dripped slabs, we find significant *reduction* of the collective mass!

▶ What is the origin of reduction?

Current density:

$$j_{z,q}(z,t) = \frac{\hbar}{m_q} \sum_{\alpha,\mathbf{k}}^{\text{occ.}} \operatorname{Im} \left[\psi_{\alpha\mathbf{k}}^{(q)*}(\mathbf{r},t) \nabla \psi_{\alpha\mathbf{k}}^{(q)}(\mathbf{r},t) \right] = \frac{\hbar}{m_q} \frac{1}{aN_{k_z}} \sum_{\alpha,k_z} \int \frac{k_{\parallel}}{\pi} \operatorname{Im} \left[u_{\alpha\mathbf{k}}^{(q)*}(z,t) (\partial_z + ik_z) u_{\alpha\mathbf{k}}^{(q)}(z,t) \right] \theta(\mu_q - \varepsilon_{\alpha\mathbf{k}}^{(q)}) dk_{\parallel}$$

✓ Protons inside the slab move toward the direction of the external force, as expected.

Current density:

$$j_{z,q}(z,t) = \frac{\hbar}{m_q} \sum_{\alpha,\mathbf{k}}^{\text{occ.}} \operatorname{Im} \left[\psi_{\alpha\mathbf{k}}^{(q)*}(\mathbf{r},t) \nabla \psi_{\alpha\mathbf{k}}^{(q)}(\mathbf{r},t) \right] = \frac{\hbar}{m_q} \frac{1}{aN_{k_z}} \sum_{\alpha,k_z} \int \frac{k_{\parallel}}{\pi} \operatorname{Im} \left[u_{\alpha\mathbf{k}}^{(q)*}(z,t) (\partial_z + ik_z) u_{\alpha\mathbf{k}}^{(q)}(z,t) \right] \theta(\mu_q - \varepsilon_{\alpha\mathbf{k}}^{(q)}) dk_{\parallel}$$

✓ Dripped neutrons outside the slab move toward the opposite direction!

Since it reduces $P_{\rm tot}$ and $\dot{P}_{\rm tot}$, $M_{\rm slab}=\dot{P}_{\rm tot}/a_{\rm p}$ is reduced

Current density:

$$j_{z,q}(z,t) = \frac{\hbar}{m_q} \sum_{\alpha,\mathbf{k}}^{\text{occ.}} \operatorname{Im} \left[\psi_{\alpha\mathbf{k}}^{(q)*}(\mathbf{r},t) \nabla \psi_{\alpha\mathbf{k}}^{(q)}(\mathbf{r},t) \right] = \frac{\hbar}{m_q} \frac{1}{aN_{k_z}} \sum_{\alpha,k_z} \int \frac{k_{\parallel}}{\pi} \operatorname{Im} \left[u_{\alpha\mathbf{k}}^{(q)*}(z,t) (\partial_z + ik_z) u_{\alpha\mathbf{k}}^{(q)}(z,t) \right] \theta(\mu_q - \varepsilon_{\alpha\mathbf{k}}^{(q)}) dk_{\parallel}$$

✓ Dripped neutrons outside the slab move toward the opposite direction!

Since it reduces $P_{\rm tot}$ and $\dot{P}_{\rm tot}$, $M_{\rm slab}=\dot{P}_{\rm tot}/a_{\rm p}$ is reduced

Reduction of $M_{\rm slab}$

- \rightarrow enhancement of $n_{\rm c}$
- \rightarrow reduction of m^*

We interpret it as an "anti-entrainment" effect

$Y_{ m p}$	$n_{ m n}^{ m f}/ar{n}_{ m n}$	Static		Dynamic
		$n_{ m n}^{ m c}/ar{n}_{ m n}$	$m_{ m n}^{\star}/m_{ m n}$	$n_{ m n}^{ m c}/ar{n}_{ m n}$
0.3	2.09×10^{-4}	0.005	0.040	0.005
0.2	0.127	0.256	0.496	0.229
0.1	0.362	0.630	0.574	0.586

$$\left(m_{\mathrm{n},\alpha\mathbf{k}}^{\star-1}\right)_{\mu\nu} = \frac{1}{\hbar^2} \frac{\partial^2 \varepsilon_{\alpha\mathbf{k}}^{(\mathrm{n})}}{\partial k_{\mu} \partial k_{\nu}}$$

Summary

The current debatable situation about the entrainment effects

The purpose is to clarify the actual effects of entrainment in the inner crust of neutron stars!

Band calculation (Thomas-Fermi approx., w/o pairing)

Band calculation
[Self-consistent (TD)DFT, w/o pairing]

$$\frac{m^\star}{m} \sim \begin{cases} 1.02 - 1.03 & ext{for the slab phase} \\ 1.11 - 1.40 & ext{for the rod phase} \end{cases}$$

$$\frac{m^{\star}}{m} \gtrsim 10$$
 or more! for the cubic lattice

$$\frac{m^\star}{m} \sim 0.65$$
 — 0.75 for the slab phase

We consider those numbers should be corrected.

Band calculation (Mean-Field approx., with pairing)

$$\frac{m^\star}{m} \sim 1-2$$
 for the slab phase $\frac{m^\star}{m} \sim 1.41-1.56$ for the cubic phase (at most)

Disorder effects (w/o band structure effects)

$$\frac{m^\star}{m} \sim 1 - 1.2$$
 for the cubic phase

Current members of our "Entrainment" group

(consist of Japan & China sides)

Kochi Univ.

K. Iida

EoS, Pasta, QPO Color superconductivity Ultracold atomic gases

+some students

Univ. Tsukuba

T. Nakatsukasa

Nuclear DFT
Pairing correlations
Large-amplitude motions

+1 PhD students

Niigata Univ.

M. Matsuo

Nuclear DFT
Pairing correlations

Linear response theory (QRPA)

+1 PhD student (graduated)

Zhejiang Univ.

G. Watanabe

Nuclear pasta Superfluid phenomena Ultracold atomic gases

+1 postdoc (Y. Minami)

If you are interested to join, you are very welcome!!

Tokyo Tech (April 2021~)

K. Sekizawa

Nuclear (TD)DFT
Superfluid dynamics, Glitches
Ultracold atomic gases

+2 MSc (graduated), 1 BSc students

Kazuyuki Sekizawa

Associate Professor

Department of Physics, School of Science

Tokyo Institute of Technology

2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan

sekizawa @ phys.titech.ac.jp

http://sekizawa.fizyka.pw.edu.pl/english/

See also:

